Viscosity Approximation to Common Fixed Points of Nonexpansive Semigroups in Hilbert Spaces

نویسندگان

  • Huimin He
  • Rudong Chen
  • Tomonari Suzuki
  • Yunyan Song
چکیده

Let C be a closed convex subset of a Hilbert space H , let {T (t) : t ≥ 0}be a strongly continuous semigroup of non-expansive mapping on C such that ⋂ t≥0 F (T (t)) = ∅, and f : C → C be a fixed contractive mapping. Let {αn} and {tn} be sequences of real numbers satisfying 0 < αn < 1, tn > 0 and limn tn = limn αn tn = 0. Define a sequence {xn} in C by xn = αnf(xn) + (1 − αn)T (tn)xn, for n ∈ N. Then {xn} converges strongly to the element of ⋂ t≥0 F (T (t)). Our results extent and improve corresponding ones of Tomonari Suzuki [Proc. Amer. Math. Soc., 131 (2002), 2133-2136] and Rudong Chen and Yunyan Song, Computers and Mathematics with Applications (Available online via http://www.sciencedirect.com/science/journal/03770427)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximation of fixed points for a continuous representation of nonexpansive mappings in Hilbert spaces

This paper introduces an implicit scheme for a   continuous representation of nonexpansive mappings on a closed convex subset of a Hilbert space with respect to a   sequence of invariant means defined on an appropriate space of bounded, continuous real valued functions of the semigroup.   The main result is to    prove the strong convergence of the proposed implicit scheme to the unique solutio...

متن کامل

General Viscosity Approximation Methods for Common Fixed Points of Nonexpansive Semigroups in Hilbert Spaces

Copyright q 2011 Xue-song Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This paper is devoted to the strong convergence of two kinds of general viscosity iteration processes for approximating common fixed points of a n...

متن کامل

On Solving of Common Fixed Point Problems for Nonexpansive Semigroups in Hilbert Spaces

This paper is concerned with a common fixed point problem of a nonexpansive semigroup in Hilbert spaces. The strong convergence theorem for a nonexpansive semigroup is obtained by a novel general iterative scheme based on the viscosity approximation method and applicability of the results is shown to extend the results of many authors existing in the current literature. Mathematics Subject Clas...

متن کامل

A new approximation method for common fixed points of a finite family of nonexpansive non-self mappings in Banach spaces

In this paper, we introduce a new iterative scheme to approximate a common fixed point for a finite family of nonexpansive non-self mappings. Strong convergence theorems of the proposed iteration in Banach spaces.

متن کامل

Hybrid viscosity approximation schemes for equilibrium problems and fixed point problems of infinitely many nonexpansive mappings

Recently, Takahashi and Takahashi [S. Takahashi, W. Takahashi, Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl., 2006, doi: 10.1016/j.jmaa.2006.08.036] suggested and analyzed an iterative scheme by the viscosity approximation method for finding a common element of the set of solutions of an equilibrium problem and the set ...

متن کامل

A general composite explicit iterative scheme of fixed point solutions of variational inequalities for nonexpansive semigroups

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit: a b s t r a c t In this paper, we introduce a composite explicit viscosity iteration method of fixed point solutions of vari...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006